

Study Report

Predicted Environmental Concentrations in Surface Water of Cyanamide and PERLKA after fertilization with PERLKA based on FOCUS STEP3

Simulations maize, potatoes, pome and stone fruit, and vegetables

Sponsor

AlzChem Trostberg GmbH Dr.-Albert-Frank-Str. 32 83308 Trostberg Germany

Institute

Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME)

Auf dem Aberg 1 57392 Schmallenberg Germany

Director Applied Ecology Prof. Dr. Christoph Schäfers

Author Dr. Michael Klein

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide and PERLKA based on FOCUS STEP3- page 2/22 -

This page was intentionally left blank for statements of the sponsor or submitter.

Report: Predicted Environmental Concentration in Surface Water of Cyanamide and PERLKA based on FOCUS STEP3 - page 3/22

GLP-compliance

This study "Predicted Environmental Concentrations in Surface Water for cyanamide and PERLKA based on FOCUS STEP3 Simulations in maize, potatoes, pome and stone fruit, and vegetables" was conducted according to the procedures described herein. This report is a true an accurate record of the results obtained. There were no circumstances that may have adversely impacted the quality or integrity of the study.

The study does not describe an experimental study, so the GLP-regulation is not applicable. However, the study wasperformed in accordance to the "Codex of Good Modelling Practices" (Görlitz 1993 und Travis 1995).

Dr. Michael Klein Exposure Modelling Fraunhofer Institute Auf dem Aberg 1 57392 Schmallenberg

Tel +49 2972 302 317 Fax +49 2972 302 319 michael.klein@ime.fraunhofer.de 7 May 2018 Date

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide and PERLKA based on FOCUS STEP3- page 4/22 -

Contents

ents		page
GLP-	-compliance	3
1.	Simulation models	5
2.	Input parameters	5
	2.1 Agricultural use pattern	5
	2.2 Substance properties of Calcium Cyanamide (PERLKA) and C	Cyanamide7
3.	Results	9
4.	References	13
5.	Appendix 1: Fitting the release and degradation of cyanamide	14
6.	Appendix 2: SWASH Report Files	15
	6.1 Application in Vegetables (400 kg/ha)	15
	6.2 Application in Potatoes (250 kg/ha)	17
	6.3 Application in Pome/stone fruit (200 kg/ha)	
	6.4 Application in Maize (200 kg/ha)	

Report: Predicted Environmental Concentration in Surface Water of Cyanamide and PERLKA based on FOCUS STEP3 - page 5/22

1. <u>Simulation models</u>

The program SWASH 5.3 (FOCUS 2001) was used to create the necessary input data for MACRO 5.5.4, PRZM 4.3.1 and TOXSWA 4.4 which were used for the simulations. All models are described in FOCUS (2001). The standard buffer was 1 m.

2. <u>Input parameters</u>

2.1 Agricultural use pattern

PERLKA is applied in various crops with different application pattern as summarised in the following table.

Сгор	App. method	Incorp. Depth (cm)	App. Rate (kg/ha)	Start of the application window
Vegetables leafy	Incorporated	at 15 cm	400	14 days before emergence (= planting)
Maize	Incorporated	at 10 cm	200	14 days before emergence (= planting)
Potatoes	Incorporated	at 15 cm	250	14 days before emergence (= planting)
Pome/Stone fruit	Granular app.	0 cm	200	14 days before leaf emergence

Table 1: Application pattern of PERLKA in various crops considered for the simulations

Report: Predicted Environmental Concentration in Surface Water of Cyanamide and PERLKA based on FOCUS STEP3 - page 6/22

Based on the information given in Table 1 following application dates were automatically calculated for the different crops at the different scnearios.

Сгор	Scenario	application date calculated by FOCUS PAT
Maize	D3 (drainage)	20 April
Maize	D4 (drainage)	26 April
Maize	D5 (drainage)	26 April
Maize	D6 (drainage)	9 April
Maize	R1 (runoff)	26 April
Maize	R2 (runoff)	22 April
Maize	R3 (runoff)	22 April
Maize	R4 (runoff)	7 April
Potatoes	D3 (drainage)	04 May
Potatoes	D4 (drainage)	17 May
Potatoes	D6 1 st season (drainage)	02 April
Potatoes	D6 2 nd season (drainage)	25 July
Potatoes	R1 (runoff)	26 April
Potatoes	R2 (runoff)	01 March
Potatoes	R3 (runoff)	28 March
Pome/stone fruit	D3 (drainage)	04 April
Pome/stone fruit	D4 (drainage)	18 April
Pome/stone fruit	D5 (drainage)	08 April
Pome/stone fruit	R1 (runoff)	26 April
Pome/stone fruit	R2 (runoff)	01 March
Pome/stone fruit	R3 (runoff)	28 March
Pome/stone fruit	R4 (runoff)	05 March
vegetables	D3 1 st season (drainage)	10 April
vegetables	D3 2 nd season (drainage)	25 July
vegetables	D4 (drainage)	16 May
vegetables	D6 (drainage)	04 August
vegetables	R1 1 st season (runoff)	26 April
vegetables	R1 2 nd season (runoff)	28 July
vegetables	R2 1 st season (runoff)	6 March
vegetables	R2 2 nd season (runoff)	08 August
vegetables	R3 1 st season (runoff)	19 February

Table 2: Application pattern in winter cereals considered for the simulations

Report: Predicted Environmental Concentration in Surface Water of Cyanamide and PERLKA based on FOCUS STEP3 - page 7/22

Сгор	Scenario	application date calculated by FOCUS PAT
vegetables	R3 2 nd season (runoff)	02 June
vegetables	R4 1 st season (runoff)	01 Mar
vegetables	R4 2 nd season (runoff)	01 June

2.2 Substance properties of Calcium Cyanamide (PERLKA) and Cyanamide

<u>PERLKA</u>

PERLKA consists to about 44% of calcium cyanamide. In order to simulate the slow release in soil of cyanamide from PERLKA granules adequately cyanamide was defined as metabolite. According to experimental data within 1 day up to 50% of the cyanamide is released out of the granules at 12 °C and 10% soil moisture (see appendix 1). Consequently, a half life of 1 day under standard conditions was assumed for the formation of cyanamide. The same release (half life of 1 day) was considered for the water phase. This value was used as a minimum number for the simulation model FOCUS TOXSWA.

<u>Cyanamide</u>

According to experimental data cyanamide is further transformed to urea (DegT50 of cyanamide 2.89 days at 12 °C) at 5% and 10% soil moisture.

Furthermore, according to EFSA (2010) the half life of cyanamide in the water-sediment system is 3.5 days (geometric mean of two studies). According to the FOCUS recommendations, this value of 3.5 days must be considered for the transformation of cyanamide in water whereas a default value of 1000 days was considered for the sediment phase. The experimental disappearance time cannot be used for the modelling since it includes not only degradation but also transportation which is considered in the model separately.

All $DegT_{50}$ values in water, sediment-system and in soil considered in the simulations are presented in Table 3.

Parameter	PERLKA	Cyanamide		
Water	1 (at 12 °C)	2.89 (at 12 °C)		
Sediment	1 (at 12 °C)	1000 (at 20 °C)		
Soil	1 (at 12 °C)	1.4 (at 20 °C)		

Table 3: DegT₅₀-values (d) of PERLKA and cyanamide

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide and PERLKA based on FOCUS STEP3- page 8/22 -

PERLKA granules cannot be dissolved in water without being transformed to cyanamide. In order to simulate the fate of PERLKA realistically the sorption constant in soil K_{oc} was set to an artificial, high number (172400 L/kg). That should guarantee that the granules remain at the applied location in soil and are only transformed to cyanamide without leaching to deeper soil layers. For PERLKA residues in surface water the same value was considered as for cyanamide.

For cyanamide an average (geomean) sorption constant of 4 L/kg was considered which was based on experimental sorption studies. It was considered more reliable than results based on the HPLC methodology.

Cyanamide has a Henry's law constant of 2.68 10⁻⁵ J/mol. However this value cannot be entered directly into the simulation model but will be internally calculated based on water solubility, vapour pressure and molecular mass.

Plant uptake was not considered since the granules are usually applied before emergence of the crop.

All other input parameters used for the simulations are summarised in Table 4.

Parameter	PERLKA	Cyanamide	remark
Sorption constant KOC in soil (L/kg)	172400	4	EFSA (2010)
Sorption constant KOC in water body (L/kg)	0	4	EFSA (2010)
Freundlich exponent (-)	1	1	EFSA (2010)
vapour pressure (20°C, Pa)	0	0.51 Pa	
Molar mass (g/mol)	80.11	42.04*	
Henry's law constant (J/mol)	-	2.68 10 ⁻⁵	EFSA (2010)
Water solubility (20°C, mg/L)	800000	800000	EFSA (2010)
molar enthalpy of vaporisation	95000	95000	default
molar enthalpy of dissolution	27000	27000	default
diffusion coefficient in water	4.3 10 ⁻⁵	4.3 10 ⁻⁵	default
diffusion coefficient in air	0.43	0.43	default
Plant uptake factor	0	0	default

Table 4: Other input parameters used for the simulations of PERLKA and Cyanamide

* hydrogen cyanamide

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide and PERLKA based on FOCUS STEP3- page 9/22 -

3. <u>Results</u>

The global maximum concentrations for all scenarios and crops are summarised in the following Table 5. In total 58 FOCUS crop-location combinations were simulated.

The following maximum concentrations were calculated for cyanamide in the simulations:

Maize: 200 kg/ha, Underground fertilisation at 10 cm: < 0.1 μg/L Potatoes: 250 kg/ha, Underground fertilisation at 15 cm: < 0.1 μg/L Pome/stone fruits: 200 kg/ha, granular application: 2.639 μg/L Vegetables: 400 kg/ha Underground fertilisation at 15 cm: <0.1 μg/L

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide and PERLKA based on FOCUS STEP3- page 10/22 -

Create		PERLKA	Cyanamide			
Crop	Scenario	PECsw (µg/L)	PECsw (µg/L)	PECsed (µg/kg)		
	D3_Ditch	0.000	0.001	0.001		
	D4_Pond	0.000	0.004	0.002		
	D4_Stream	0.000	0.012	0.006		
	D5_Pond	0.000	0.000	0.000		
	D5_Stream	0.000	0.000	0.000		
Maize	D6_Ditch	0.000	0.049	0.021		
Walze	R1_Pond	0.000	0.000	0.000		
	R1_Stream	0.000	0.000	0.000		
	R2_Stream	0.000	0.000	0.000		
	R3_Stream	0.000	0.000	0.000		
	R4_Stream	0.000	0.000	0.000		
	D3_Ditch	0.000	0.000	0.000		
	D4_Pond	0.000	0.000	0.000		
	D4_Stream	0.000	0.002	0.001		
	D6_Ditch	0.000	0.065	0.003		
Potatoes	D6_Ditch	0.000	0.012	0.001		
	R1_Pond	0.000	0.000	0.000		
	R1_Stream	0.000	0.000	0.000		
	R2_Stream	0.000	0.000	0.000		
	R3_Stream	0.000	0.000	0.000		
	D3_Ditch	0.000	0.000	0.000		
	D4_Pond	0.000	0.001	0.001		
	D4_Stream	0.000	0.004	0.002		
	D5_Pond	0.000	0.000	0.000		
Pome/stone	D5_Stream	0.000	0.000	0.000		
fruit	R1_Pond	0.000	0.001	0.000		
	R1_Stream	0.000	0.293	0.005		
	R2_Stream	0.000	2.052	0.039		
	R3_Stream	0.000	2.639	0.091		
	R4_Stream	0.000	0.000	0.000		

Table 5: Global maximum concentrations or PERLKA and Cyanamide at FOCUS Step 3

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide and PERLKA based on FOCUS STEP3- page 11/22 -

Gron		PERLKA	Cyan	amide
Сгор	Scenario	PECsw (µg/L)	PECsw (µg/L)	PECsed (µg/kg)
	D3_Ditch	0.000	0.000	0.000
	D3_Ditch	0.000	0.003	0.002
	D4_Pond	0.000	0.001	0.000
	D4_Stream	0.000	0.002	0.001
Leafy	D6_Ditch	0.000	0.022	0.002
	R1_Pond	0.000	0.000	0.000
vegetables	R1_Pond	0.000	0.000	0.000
(400 kg/ha underground	R1_Stream	0.000	0.000	0.000
fertilisation at	R1_Stream	0.000	0.000	0.000
15 cm)	R2_Stream	0.000	0.000	0.000
	R2_Stream	0.000	0.000	0.000
	R3_Stream	0.000	0.000	0.000
	R3_Stream	0.000	0.000	0.000
	R4_Stream	0.000	0.000	0.000
	R4_Stream	0.000	0.000	0.000

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide and PERLKA based on FOCUS STEP3- page 12/22 -

Conclusions

The following maximum concentrations were calculated for cyanamide at step 3 simulations: Maize: 200 kg/ha, Underground fertilisation at 10 cm: < 0.1 μg/L Potatoes: 250 kg/ha, Underground fertilisation at 15 cm: < 0.1 μg/L Pome/stone fruits: 200 kg/ha, granular application: 2.639 μg/L Vegetables: 400 kg/ha Underground fertilisation at 15 cm: <0.1 μg/L

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide and PERLKA based on FOCUS STEP3- page 13/22 -

4. <u>References</u>

- FOCUS (2000): "FOCUS groundwater scenarios in the EU review of active substances". Report of the FOCUS Groundwater Scenarios Workgroup, EC Doc. Ref. SANCO/321/2000 rev. 2; and "Generic guidance for FOCUS groundwater scenarios". FOCUS Groundwater Scenario Workgroup, May 2001, Version
- FOCUS (2001). "FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC". Report of the FOCUS Working Group on Surface Water Scenarios, EC
- Görlitz. G. (1993): Verfahrensregeln zur korrekten Durchführung und Auswertung von Modellrechnungen zur Simulation des Umweltverhaltens von Pflanzenschutzmitteln.
- Travis. K.Z. (1995): Recommendations for the correct use of models and reporting of modelling results.- in: 'Leaching Models and EU registration'. Final report of the FOCUS Group. Doc. 4952/VI/95.
- FOCUS (2007). "Landscape And Mitigation Factors In Aquatic Risk Assessment. Volume 1. Extended Summary and Recommendations". Report of the FOCUS Working Group on Landscape and MitigationFactors in Ecological Risk Assessment, EC Document Reference SANCO/10422/2005 v2.0. 169 pp.

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide and PERLKA based on FOCUS STEP3- page 14/22 -

5. Appendix 1: Fitting the release and degradation of cyanamide

Assumptions											
			ring first order	degradation k	1						
The equation	is [Cy free]=1	-exp(-k1*t)									
or the dear	dation of ever	amida ta uraa	frat ardar is a	anaidarad aa	well, rate constant k2						
	ve equation is			considered as	well, rate constant kz						
Combination	of both equation	ons dives [Cv]	=(1-exp(-k1*t))	*exn(_k2*t)							
Jonnomation	or both equal	ons gives [oy]		cxp(tz t)							
Curve fitting v	was done usin	g least square	s objective								
	med with exce										
		-									
0% Soil mo	oisture granu	S				5% soil moi	sture granuls				
eit Tage	Cy ist	Cy kalk	quadrat Delta			Zeit Tage	Cy ist	Cy kalk	quadrat Delta		
0.04						2en rage 0.04			0.00012774		
1.00						1.00					
2.00			3.4157E-05			2.00					
3.00						3.00					
4.00			0.00013817			6.00					
7.00			0.00405865			9.00					
11.00	11.6%	7.17%	0.00199614			13.00	0.0%	4.4%	0.00193093		
18.00	6.0%	1.34%	0.00217172			18.00	0.0%	1.3%	0.00017903		
- · ·		D(50.74)	0			D		D(50 (1)	O D II	0	
Parameter	0 07707070	Dt50 (d)	Sum Delta			Parameter	0.0000000	Dt50 (d)	Sum Delta	fkorr	exp
(1	0.67707075		0.01067807			K1	0.35053985		0.01896982		0.94972812
<2	0.23956379	2.89				K2	0.23956379	2.89			1.558E-10
	Modellki	inetik Refe	sol01A 10%	Feuchte			Modellk	inetik Refe	sol01A 5%	Feuchte	
100.0%	_					100.0%					
90.0%						90.0%					
						80.0%					
			•	Istwerte Cyan	amid			/	•	Istwerte Cyanamid	
80.0%						70.0%					
80.0%				 Modell CaNCN 						Modell CaNCN	
80.0%						8 50.0%		Х		 Modell Cyanamid frei 	
80.0% v0.08 sauteil 80.0% ks sauteil 80.				 Modell Cyana 	mid frei	5	· · ·				
80.0% Speziesanteil 80.0% 60.0% 50.0%						40.0%				 Modell Cyanamid gesamt 	
80.0% Speziesanteil 80.0% 60.0% 50.0%				-Modell Cyana	nid gesamt	40.0% 20.0%				Modell Cyanamid gesamt	
80.0% 70.0% 50.0% 40.0%	X				nid gesamt	tu 40.0%	· ····································			Modell Cyanamid gesamt Modell Harnstoff ff	
80.0% 70.0% 60.0% 50.0% 40.0% 30.0%	X		-	-Modell Cyana	nid gesamt	40.0% tu 40.0% 30.0% 20.0% 10.0%		ŀ			
80.0% 70.0% 60.0% 50.0% 40.0% 30.0% 20.0%	X			-Modell Cyana	nid gesamt	20.0%	i).	ŀ			
80.0% 70.0% 60.0% 50.0% 40.0% 20.0% 10.0% 0.0%	0.00 2.00 4	4.00 6.00 A		-Modell Cyana	nid gesamt	10.0%	0.00 2.00 4	1.00 6.00 E			
80.0% 70.0% 60.0% 50.0% 40.0% 20.0% 10.0% 0.0%	2.00 2.00 4			Modell Cyana Modell Harnst	nid gesamt	10.0%	0.00 2.00 4			Modell Harnstoff ff	

Report:Predicted Environmental Concentration in Surface Water of
Cyanamide based on FOCUS STEP3- page 15/22 -

6. Appendix 2: SWASH Report Files

6.1 Application in Vegetables (400 kg/ha)

* SWASH report file * made by FOCUS-SWASH UI v. 5 (internal version 5.1.0, 02 April 2015) *	
* File Name : E:\SwashProjects\CN2_VEG3_CN2_VEG3_report.txt	
* Description : 400 kg 15 cm uniform * Substance : CN2Gr	
*	
* Creation : 03-May-2018, 15:32	
* * Remarks : SWASH report helps you to set up the needed runs to calculate the PECsw and PECsed, occuring in the EU	
* for the selected substance, used on the selected crop. The scenario code informs you which models you need to	
* run for this scenario.	
* D1-D6: drainage entries calculated by the MACRO model, fate in surface water calculated by the TOXSWA model	
* R1-R4: runoff and erosion entries calculated by the PRZM model, fate in surface water calculated by the TOXSWA model	
*	
*	
* For STREAMS the Mean Deposition and Mass Loading, as calculated by the FOCUS Drift Calculator, have been multiplied	by a
<pre>* factor 1.2 to account for pesticide mass incoming from the upstream catchment as decided by the FOCUS Surface Water * Generating Marking Group</pre>	
* Scenarios Working Group.	

Report: Report: Predicted Environmental Concentration in Surface Water of **Cyanamide based on FOCUS STEP3** - page 16/22 -CREATED RUNS -- APPLICATION ------ on Water Surface ----- | * -ID-----Crop(lst/2nd)-----Scenario-WaterbodyType-|-Method-----First/Last/Interval--#--Rate-|-Mean Deposition-Mass Loading (d) (kg/ha) (% of Appl. Rate) (mg/m2)* 1048 Vegetables, leafy(1st) D3_Ditch 11-Apr/11-May/1 1 400.0000 0.000 0.000 soil incorp. * 1049 Vegetables, leafy(2nd) D3_Ditch 22-Jul/21-Aug/1 1 400.0000 0.000 0.000 soil incorp. Vegetables, leafy(1st) * 1050 D4 Pond soil incorp. 26-Apr/26-May/1 1 400.0000 0.000 0.000 * 1051 Vegetables, leafy(1st) D4 Stream soil incorp. 26-Apr/26-May/1 1 400.0000 0.000 0.000 * 1052 Vegetables, leafy(1st) D6 Ditch soil incorp. 1-Aug /31-Aug/1 1 400.0000 0.000 0.000 * 1053 Vegetables, leafy(1st) R1_Pond 6-Apr /6-May /1 1 400.0000 0.000 0.000 soil incorp. * 1054 Vegetables, leafy(2nd) R1_Pond soil incorp. 17-Jul/16-Aug/1 1 400.0000 0.000 0.000 * 1055 Vegetables, leafy(1st) R1_Stream 6-Apr /6-May /1 1 400.0000 0.000 0.000 soil incorp. * 1056 Vegetables, leafy(2nd) R1 Stream soil incorp. 17-Jul/16-Aug/1 1 400.0000 0.000 0.000 * 1057 Vegetables, leafy(1st) R2_Stream soil incorp. 14-Feb/16-Mar/1 1 400.0000 0.000 0.000 * 1058 Vegetables, leafy(2nd) R2_Stream soil incorp. 17-Jul/16-Aug/1 1 400.0000 0.000 0.000 * 1059 Vegetables, leafy(1st) 15-Feb/17-Mar/1 1 400.0000 0.000 0.000 R3_Stream soil incorp. * 1060 Vegetables, leafy(2nd) R3_Stream soil incorp. 1-Jun /1-Jul /1 1 400.0000 0.000 0.000 * 1061 Vegetables, leafy(1st) R4 Stream soil incorp. 15-Feb/17-Mar/1 1 400.0000 0.000 0.000 * 1062 Vegetables, leafy(2nd) R4_Stream soil incorp. 1-Jun /1-Jul /1 1 400.0000 0.000 0.000

Report:Report:Predicted Environmental Concentration in Surface Water of
Cyanamide based on FOCUS STEP3- page 17/22 -

6.2 Application in Potatoes (250 kg/ha)

```
* SWASH report file
* made by FOCUS-SWASH UI v. 5 (internal version 5.1.0, 02 April 2015)
* File Name : E:\SwashProjects\CN2_PO1\CN2_PO1_report.txt
* Description : 250 kg at 15 cm
* Substance : CN2Gr
*
 Creation
            : 25-Apr-2018, 10:44
* Remarks : SWASH report helps you to set up the needed runs to calculate the PECsw and PECsed, occuring in the EU
*
            for the selected substance, used on the selected crop. The scenario code informs you which models you need to
            run for this scenario.
            D1-D6: drainage entries calculated by the MACRO model, fate in surface water calculated by the TOXSWA model
            R1-R4: runoff and erosion entries calculated by the PRZM model, fate in surface water calculated by the TOXSWA model
*
            For STREAMS the Mean Deposition and Mass Loading, as calculated by the FOCUS Drift Calculator, have been multiplied by a
            factor 1.2 to account for pesticide mass incoming from the upstream catchment as decided by the FOCUS Surface Water
            Scenarios Working Group.
```


Predicted Environmental Concentration in Surface Water of **Report: Report:** Cyanamide based on FOCUS STEP3 - page 18/22 -CREATED RUNS ----- APPLICATION ------|---- on Water Surface -----| * -ID-----Crop(lst/2nd)-----Scenario-WaterbodyType--Method-----First/Last/Interval--#--Rate---Mean Deposition-Mass Loading (d) (kg/ha) (% of Appl. Rate) (mg/m2)* 960 Potatoes(1st) D3_Ditch soil incorp. 26-Apr/26-May/1 1 250.0000 0.000 0.000 Potatoes(1st) D4_Pond 8-May /7-Jun /1 1 250.0000 0.000 0.000 * 961 soil incorp. 0.000 * 962 Potatoes(1st) D4_Stream soil incorp. 8-May /7-Jun /1 1 250.0000 0.000 * 963 Potatoes(1st) D6_Ditch soil incorp. 27-Mar/26-Apr/1 1 250.0000 0.000 0.000 * 964 Potatoes(2nd) D6_Ditch 22-Jul/21-Aug/1 1 250.0000 0.000 0.000 soil incorp. * * 965 R1_Pond 21-Apr/21-May/1 1 250.0000 0.000 0.000 Potatoes(1st) soil incorp. * 966 Potatoes(1st) R1_Stream soil incorp. 21-Apr/21-May/1 1 250.0000 0.000 0.000 * 967 Potatoes(1st) R2_Stream 0.000 soil incorp. 1-Mar /31-Mar/1 1 250.0000 0.000 * 968 Potatoes(1st) R3_Stream soil incorp. 27-Mar/26-Apr/1 1 250.0000 0.000 0.000 ******************* Surface WAter Scenarios Help ******************************** * * * * * * * * * *****

Report:Report:Predicted Environmental Concentration in Surface Water of
Cyanamide based on FOCUS STEP3- page 19/22 -

6.3 Application in Pome/stone fruit (200 kg/ha)

```
* SWASH report file
* made by FOCUS-SWASH UI v. 5 (internal version 5.1.0, 02 April 2015)
* File Name : E:\SwashProjects\CN2_POM1\CN2_POM1_report.txt
* Description : 200 kg at surface
* Substance : CN2Gr
* Creation
           : 25-Apr-2018, 10:53
*
* Remarks : SWASH report helps you to set up the needed runs to calculate the PECsw and PECsed, occuring in the EU
*
            for the selected substance, used on the selected crop. The scenario code informs you which models you need to
            run for this scenario.
            D1-D6: drainage entries calculated by the MACRO model, fate in surface water calculated by the TOXSWA model
            Rl-R4: runoff and erosion entries calculated by the PRZM model, fate in surface water calculated by the TOXSWA model
            For STREAMS the Mean Deposition and Mass Loading, as calculated by the FOCUS Drift Calculator, have been multiplied by a
            factor 1.2 to account for pesticide mass incoming from the upstream catchment as decided by the FOCUS Surface Water
            Scenarios Working Group.
```


Report: Report: Predicted Environmental Concentration in Surface Water of Cyanamide based on FOCUS STEP3 - page 20/22 -CREATED RUNS ----- APPLICATION ------ on Water Surface -----* -ID-----Crop(lst/2nd)-----Scenario-WaterbodyType--Method-----First/Last/Interval--#--Rate---Mean Deposition-Mass Loading (kg/ha) (% of Appl. Rate) (d) (mg/m2)* 978 Pome/stone fruit, ea(1st) D3_Ditch granular appl. 1-Apr /1-May /1 1 200.0000 0.000 0.000 * 979 Pome/stone fruit, ea(1st) D4_Pond granular appl. 6-Apr /6-May /1 1 200.0000 0.000 0.000 * 980 Pome/stone fruit, ea(1st) D4_Stream granular appl. 6-Apr /6-May /1 1 200.0000 0.000 0.000 * 981 Pome/stone fruit, ea(1st) D5_Pond granular appl. 18-Mar/17-Apr/1 1 200.0000 0.000 0.000 * 982 Pome/stone fruit, ea(1st) D5_Stream granular appl. 18-Mar/17-Apr/1 1 200.0000 0.000 0.000 * 983 Pome/stone fruit, ea(1st) R1_Pond granular appl. 1-Apr /1-May /1 1 200.0000 0.000 0.000 * 984 Pome/stone fruit, ea(1st) R1_Stream granular appl. 1-Apr /1-May /1 1 200.0000 0.000 0.000 * 985 Pome/stone fruit, ea(1st) R2_Stream granular appl. 1-Mar /31-Mar/1 1 200.0000 0.000 0.000 granular appl. 18-Mar/17-Apr/1 * 986 Pome/stone fruit, ea(1st) R3_Stream 1 200.0000 0.000 0.000 * 987 Pome/stone fruit, ea(1st) R4_Stream granular appl. 1-Mar /31-Mar/1 1 200.0000 0.000 0.000

Report:Report:Predicted Environmental Concentration in Surface Water of
Cyanamide based on FOCUS STEP3- page 21/22 -

6.4 Application in Maize (200 kg/ha)

	I report file by FOCUS-SWASH UI v. !	5 (internal version 5.1.	0, 02 April 2015)			
* File	iption : 200 kg at 10	ects\CN2_MZ1\CN2_MZ1_rep cm	ort.txt				
* Creat *	ion : 03-May-2018,	15:28					
* Remar * * *	for the selected run for this sce	ps you to set up the nee substance, used on the nario. entries calculated by th	selected crop. T	ne scenario code info	orms you which mod	els you need to	
* * *	R1-R4: runoff and	d erosion entries calcul	ated by the PRZM	model, fate in surfa	ce water calculat	ed by the TOXSW	MA model
* * * *		Mean Deposition and Mass count for pesticide mass g Group.	5,	-			
* * * * * * *	****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * * *	******
	TED RUNS						
* *		**************************************		APPLICATION		on Water Surfa	.ce
	crop(1st/2nd)	Scenario-waterbodylyp	e- -Method		kg/ha) (% of) (%	-	(mg/m2)
* * 1037 *	Maize(1st)	D3_Ditch	soil incorp.	21-Apr/21-May/1	1 200.0000	0.000	0.000
* 1038	Maize(1st)	D4_Pond	soil incorp.	26-Apr/26-May/1	1 200.0000	0.000	0.000

ort:	•	Predicted Environment based on FOCUS STEP		tration in Surface Water of - page 22/22 -				
*								
	Maize(1st)	D4_Stream	soil incorp.	26-Apr/26-May/1	1	200.0000	0.000	0.000
* 1040 *	Maize(1st)	D5_Pond	soil incorp.	26-Apr/26-May/1	1	200.0000	0.000	0.000
* 1041 *	Maize(lst)	D5_Stream	soil incorp.	26-Apr/26-May/1	1	200.0000	0.000	0.000
* 1042 *	Maize(lst)	D6_Ditch	soil incorp.	6-Apr /6-May /1	1	200.0000	0.000	0.000
* 1043 *	Maize(lst)	R1_Pond	soil incorp.	19-Apr/19-May/1	1	200.0000	0.000	0.000
* 1044 *	Maize(1st)	R1_Stream	soil incorp.	19-Apr/19-May/1	1	200.0000	0.000	0.000
* 1045 *	Maize(1st)	R2_Stream	soil incorp.	17-Apr/17-May/1	1	200.0000	0.000	0.000
* 1046 *	Maize(1st)	R3_Stream	soil incorp.	17-Apr/17-May/1	1	200.0000	0.000	0.000
	Maize(1st)	R4_Stream	soil incorp.	27-Mar/26-Apr/1	1	200.0000	0.000	0.000