

Study Report

Predicted Environmental Concentrations in Groundwater of Nitrate after fertilization using FOCUSPEARL

Simulations in oil seed rape (winter), potatoes, and cabbage

Sponsor

AlzChem Trostberg GmbH Dr.-Albert-Frank-Str. 32 83308 Trostberg Germany

Institute

Fraunhofer Institute for Molecular Biology and Applied Ecology IME Auf dem Aberg 1 57392 Schmallenberg Germany

Head of Applied Ecology

Prof. Dr. Christoph Schäfers

Author Dr. Michael Klein Dr. Judith Klein

October 28, 2019

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 2/17

This page was intentionally left blank for statements of the sponsor or submitter.

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 3/17 -

Statement of compliance

This study "Predicted Environmental Concentrations in Groundwater of Nitrate after fertilization using FOCUSPEARL - Simulations in oil seed rape (winter), potatoes, and cabbage" was conducted according to the procedures described herein. This report is a true and accurate record of the results obtained. There were no circumstances that may have adversely impacted the quality or integrity of the study.

The GLP-regulation is not applicable. However, the study was performed in accordance with the Codex of "Good Modelling Practices" (Görlitz 1993 und Travis 1995)

October 28, 2019 Date

Dr. Judith Klein Modelling and Statistics Fraunhofer Institute IME Auf dem Aberg 1 57392 Schmallenberg

Tel +49 2972 302 256 Fax +49 2972 302 319 judith.klein@ime.fraunhofer.de

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 4/17

Contents		page
Stater	nent of compliance	3
1.	Simulation model	5
2.	Scenarios	5
	Soil and climate scenarios of the FOCUS simulation models	5
	Crop scenarios	7
3.	Physico-chemical and Degradation Data	
4.	Results	10
5.	Conclusion	12
6.	References	13
7.	Appendix: PEARL FOCUS Summary Output file	14
	Oil seed rape (winter), 45 kg/ha in August/September	14
	Oil seed rape (winter), 215.1 kg/ha in February/March, 258.7 kg/ha in April	15
	Potatoes, 273.1 kg/ha in begin of April, 279.8 kg/ha in end of June/begin of J	uly 16
	Cabbage, 262.2 kg/ha in May, 335.7 kg/ha in May/June, in July and in Augus	st 17

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 5/17

1. <u>Simulation model</u>

The simulation model FOCUS-PEARL 4.4.4 was used for the calculation of the predicted environmental concentrations in groundwater (PECgw) of nitrate. Solute transport was calculated with the Convection-Dispersion-Equation (CDE). Non-linear sorption was implemented using a Freundlich isotherm. Depth-dependent sorption and transformation parameters were considered according to the common approach in FOCUS (2000) and FOCUS (2009).

2. <u>Scenarios</u>

Soil and climate scenarios of the FOCUS simulation models

The soil and climate scenarios defined by FOCUS 2000 were selected to represent a vulnerability approximating the 90th percentile for each scenario (realistic worst-case). Soils were selected by expert judgment whereas the weather data sets were obtained from the MARS meteorological database (MARS = Monitoring Agricultural ResourceS). The nine locations cover all climatic regions of agricultural relevance in Europe (Figure 1) and are briefly characterized in Table 1. For all scenarios, daily weather data are available for a period of 20 years.

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 6/17 -

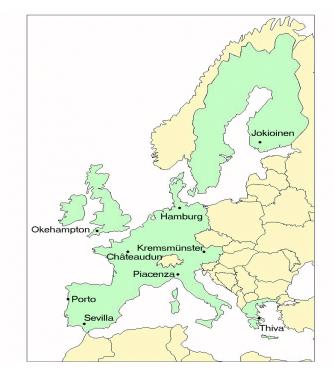


Figure 1: Locations of the nine FOCUS groundwater scenarios

Location	Soil type (USDA)	Organic Matter [%]	Annual average air temperature [°C]	Annual sum of precipitation [mm]	
Châteaudun	silty clay loam	2.4	11.3	648+ I*	
Hamburg	sandy loam	2.6	9.0	786	
Jokioinen	loamy sand	7.0	4.1	638	
Kremsmünster	loam/silt loam	3.6	8.6	900	
Okehampton	loam	3.8	10.2	1038	
Piacenza	loam	2.2	13.2	857 + I*	
Porto	loam	2.5	14.8	1150	
Sevilla	silt loam	1.6	17.9	493 + I*	
Thiva	loam	1.3	16.2	500 + I*	
*irrigation					

Table 1: Characteristics of the nine weather and soil scenarios created by FOCUS

*irrigation

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 7/17

Crop scenarios

For the simulations a single variation (continuous cropping of oil seed rape (winter), potatoes, and cabbage) over a period of 26 years is taken into account according to the recommendations of FOCUS [FOCUS 2000].

Table 2: Considered scenarios for the simulation of single variation of nitrate in ground water

				Dosage in		
Scenario	Crop	Application	Арр. Туре	kg/ha	Date	Time period
1a	Oil seed rape	1st	To the soil surface	45	30/08/1901	August/September
1b	Oil seed	1st	To the soil surface	215.1	28/02/1901	February/march
10	rape	2nd	To the soil surface	258.7	01/04/1901	April
	Potatoes	1st	To the soil surface	273.1	01/04/1901	begin of April
2		2nd	To the soil surface	279.8	30/06/1901	end of June/begin of July
	O-hh-m-)	1st	To the soil surface	262.2	01/05/1901	Мау
3		2nd	To the soil surface	335.7	01/06/1901	May/June
3	Cabbage)	3rd	To the soil surface	335.7	01/07/1901	July
		4th	To the soil surface	335.7	01/08/1901	August

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 8/17

3. <u>Physico-chemical and Degradation Data</u> <u>Nitrate</u>

Ammonium nitrate degrades to ammonium and nitrate in soil. In order to simulate the fate of nitrate realistically the sorption constant in soil KOC of nitrate was set to zero and the water was set to an artificial value of 10000 mg/L at 20°C.

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 9/17

<u>Nitrate</u>

Molecular Mass:	62 g/mol
Vapour pressure:	0
Water solubility:	10 000 mg/L at 20 °C
Adsorption	0 L/kg (Koc)
	0 L/kg (Kom)
Freundlich Exponent.	0.9 (default)
Diffusion coefficient in water:	4.3 10-5 m ² d-1 (FOCUS default)
Diffusion coefficient in air:	0.43 m ² d-1 (FOCUS default)
Degradation:	DT50: 1000 d at 20 °C
Plant uptake factor:	0.0 (worst case)
Application mode:	annual application

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 10/17

4. <u>Results</u>

The global maximum concentrations are summarised in the following tables. Four simulations using different crops and application patterns are performed:

- Scenario 1a: Oil seed rape (winter), 45 kg/ha in August/September
- Scenario 1b: Oil seed rape (winter), 215.1 kg/ha in February/March, 258.7 kg/ha in April
- Scenario 2: Potatoes, 273.1 kg/ha in begin of April, 279.8 kg/ha in end of June/begin of July
- Scenario 3: Cabbage, 262.2 kg/ha in May, 335.7 kg/ha in May/June, 335.7 kg/ha in July, 335.7 kg/ha in August

The highest concentration of nitrate in leachate for the oil seed rape scenario (1a, 1b) are obtained in Châteaudun. For potatoes (scenario 2), the highest concentrations are predicted in Thiva. In Jokioinen the highest nitrate concentrations are found for cabbage.

Scenario	1a: Oil seed rape (winter), 45 kg/ha in August/September	1b: Oil seed rape (winter), 215.1 kg/ha in February/March, 258.7 kg/ha in April
Location	80 th percentile of concentration in leachate	80 th percentile of concentration in leachate
	(µg NO3 /L)	(µg NO3 /L)
CHATEAUDUN	53200.3691	543061.53
HAMBURG	24134.7502	250791.419
KREMSMUENSTER	13936.6333	141753.74
OKEHAMPTON	13255.8316	134466.351
PIACENZA	18512.5227	189279.942
PORTO	16390.4251	162046.403

Table 3: 80th percentile of annual leaching concentration for nitrate of scenario 1 (oil seed rape)

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 11/17

Scenario	2: Potatoes, 273.1 kg/ha in begin of April, 279.8 kg/ha in end of June/begin of July
Location	80 th percentile of concentration in leachate
	(µg NO3 /L)
CHATEAUDUN	335617.5851
HAMBURG	292349.6938
JOKIOINEN	369525.1315
KREMSMUENSTER	185514.3181
OKEHAMPTON	149220.097
PIACENZA	239289.3722
PORTO	121735.34
SEVILLA	420744.0245
THIVA	539480.0475

Table 4: 80th percentile of annual leaching concentration for nitrate of scenario 2 (potatoes)

Table 5: 80th percentile of annual leaching concentration for nitrate of scenario 3 (cabbage)

Scenario	3: Cabbage, 262.2 kg/ha in May, 335.7 kg/ha in May/June, 335.7 kg/ha in July, 335.7 kg/ha in August
Location	80 th percentile of concentration in leachate
	(µg NO3 /L)
CHATEAUDUN	670070.9644
HAMBURG	648717.8676
JOKIOINEN	886762.5166
KREMSMUENSTER	401065.5267
PORTO	262669.438
SEVILLA	*****
THIVA	659263.4098

*********** Simulation failed

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 12/17

5. <u>Conclusion</u>

Three different crops are considered to calculate the concentration of nitrate in the leachate. Nitrate reaches groundwater by leaching (Table 3, Table 4 and Table 5).

Report: Predicted Environmental Concentrations in Groundwater of Nitrate using FOCUSPEARL - page 13/17 -

6. <u>References</u>

- FOCUS (2000). FOCUS groundwater scenarios in the EU plant protection product review process. Report of the FOCUS Groundwater Scenario Workgroup, EC Document Reference Sanco/321/2000.
- FOCUS (2009): Technical advice on the Q10, agreed by the Commission Standing Committee on the Food Chain and Animal Health (provided by EFSA), available at FOCUS home page (http://viso.ei.jrc.it/focus/docs/Technical%20advice%20on%20the%20Q10.doc)
- Görlitz G. (1993): Verfahrensregeln zur korrekten Durchführung und Auswertung von Modellrechnungen zur Simulation des Umweltverhaltens von Pflanzenschutzmitteln.
- Travis K.Z. (1995): Recommendations for the correct use of models and reporting of modelling results.- in: 'Leaching Models and EU registration'. Final report of the FOCUS Group. Doc. 4952/VI/95

Report: Predicted Environmental Concentrations in Groundwater of Cyanamide and PERLKA after fertilization with PERLKA using FOCUSPEARL - page 14/17 -

7. Appendix: PEARL FOCUS Summary Output file

Oil seed rape (winter), 45 kg/ha in August/September

RUN_ ID	RESULT_TEXT	SUBSTA NCE	NO3	LOCATION	APPLICATION_SC HEME	CROP_CALEN DAR	SOIL_TYP E	METEO_STA TION	IRRIGATION_SC HEME
100	Concentration closest to the 80th percentile (ug/L)	NO3	53200.3 691	CHATEAUDU N	Nitrate_OSR1	CHAT- WOILSEED	CHAT- S_Soil	CHAT-M	No
101	Concentration closest to the 80th percentile (ug/L)	NO3	24134.7 502	HAMBURG	Nitrate_OSR1	HAMB- WOILSEED	HAMB- S_Soil	HAMB-M	No
102	Concentration closest to the 80th percentile (ug/L)	NO3	13936.6 333	KREMSMUEN STER	Nitrate_OSR1	KREM- WOILSEED	KREM- S_Soil	KREM-M	No
103	Concentration closest to the 80th percentile (ug/L)	NO3	13255.8 316	OKEHAMPTO N	Nitrate_OSR1	OKEH- WOILSEED	OKEH- S_Soil	OKEH-M	No
104	Concentration closest to the 80th percentile (ug/L)	NO3	18512.5 227	PIACENZA	Nitrate_OSR1	PIAC- WOILSEED	PIAC- S_Soil	PIAC-M	No
105	Concentration closest to the 80th percentile (ug/L)	NO3	16390.4 251	PORTO	Nitrate_OSR1	PORT- WOILSEED	PORT- S_Soil	PORT-M	No

Report: Predicted Environmental Concentrations in Groundwater of Cyanamide and PERLKA after fertilization with PERLKA using FOCUSPEARL - page 15/17 -

Oil seed rape (winter), 215.1 kg/ha in February/March, 258.7 kg/ha in April

RUN_		SUBSTA			APPLICATION_SC	CROP_CALEN	SOIL_TYP	METEO_STA	IRRIGATION_SC
ID	RESULT_TEXT	NCE	NO3	LOCATION	HEME	DAR	E	TION	HEME
	Concentration closest to the 80th		543061.	CHATEAUDU		CHAT-	CHAT-		
106	percentile (ug/L)	NO3	53	Ν	Nitrate_OSR2	WOILSEED	S_Soil	CHAT-M	No
	Concentration closest to the 80th		250791.			HAMB-	HAMB-		
107	percentile (ug/L)	NO3	419	HAMBURG	Nitrate_OSR2	WOILSEED	S_Soil	HAMB-M	No
	Concentration closest to the 80th		141753.	KREMSMUEN		KREM-	KREM-		
108	percentile (ug/L)	NO3	74	STER	Nitrate_OSR2	WOILSEED	S_Soil	KREM-M	No
	Concentration closest to the 80th		134466.	OKEHAMPTO		OKEH-	OKEH-		
109	percentile (ug/L)	NO3	351	Ν	Nitrate_OSR2	WOILSEED	S_Soil	OKEH-M	No
	Concentration closest to the 80th		189279.			PIAC-	PIAC-		
110	percentile (ug/L)	NO3	942	PIACENZA	Nitrate_OSR2	WOILSEED	S_Soil	PIAC-M	No
	Concentration closest to the 80th		162046.			PORT-	PORT-		
111	percentile (ug/L)	NO3	403	PORTO	Nitrate_OSR2	WOILSEED	S_Soil	PORT-M	No

Report: Predicted Environmental Concentrations in Groundwater of Cyanamide and PERLKA after fertilization with PERLKA using FOCUSPEARL - page 16/17 -

Potatoes, 273.1 kg/ha in begin of April, 279.8 kg/ha in end of June/begin of July

RUN_		SUBSTA			APPLICATION_SC	CROP_CALEN	SOIL_TYP	METEO_STA	IRRIGATION_SC
ID	RESULT_TEXT	NCE	NO3	LOCATION	HEME	DAR	E	TION	HEME
	Concentration closest to the 80th		335617.	CHATEAUDU		CHAT-	CHAT-		
112	percentile (ug/L)	NO3	585	Ν	Nitrate_PO	SPOTATOES	S_Soil	CHAT-M	FOCUS
	Concentration closest to the 80th		292349.			HAMB-	HAMB-		
113	percentile (ug/L)	NO3	694	HAMBURG	Nitrate_PO	SPOTATOES	S_Soil	HAMB-M	No
	Concentration closest to the 80th		369525.			JOKI-	JOKI-		
114	percentile (ug/L)	NO3	132	JOKIOINEN	Nitrate_PO	SPOTATOES	S_Soil	JOKI-M	No
	Concentration closest to the 80th		185514.	KREMSMUEN		KREM-	KREM-		
115	percentile (ug/L)	NO3	318	STER	Nitrate_PO	SPOTATOES	S_Soil	KREM-M	No
	Concentration closest to the 80th		149220.	OKEHAMPTO		OKEH-	OKEH-		
116	percentile (ug/L)	NO3	097	Ν	Nitrate_PO	SPOTATOES	S_Soil	OKEH-M	No
	Concentration closest to the 80th		239289.			PIAC-	PIAC-		
117	percentile (ug/L)	NO3	372	PIACENZA	Nitrate_PO	SPOTATOES	S_Soil	PIAC-M	FOCUS
	Concentration closest to the 80th		121735.			PORT-	PORT-		
118	percentile (ug/L)	NO3	34	PORTO	Nitrate_PO	SPOTATOES	S_Soil	PORT-M	FOCUS
	Concentration closest to the 80th		420744.			SEVI-	SEVI-		
119	percentile (ug/L)	NO3	024	SEVILLA	Nitrate_PO	SPOTATOES	S_Soil	SEVI-M	FOCUS
	Concentration closest to the 80th		539480.			THIV-	THIV-		
120	percentile (ug/L)	NO3	048	THIVA	Nitrate_PO	SPOTATOES	S_Soil	THIV-M	FOCUS

Report: Predicted Environmental Concentrations in Groundwater of Cyanamide and PERLKA after fertilization with PERLKA using FOCUSPEARL - page 17/17 -

Cabbage, 262.2 kg/ha in May, 335.7 kg/ha in May/June, in July and in August

RUN_		SUBSTA			APPLICATION_SC	CROP_CALE	SOIL_TYP	METEO_STA	IRRIGATION_SC
ID	RESULT_TEXT	NCE	NO3	LOCATION	HEME	NDAR	E	TION	HEME
	Concentration closest to the 80th			CHATEAUDU		CHAT-	CHAT-		
121	percentile (ug/L)	NO3	670070.964	Ν	Nitrate_VEG	CABBAGE	S_Soil	CHAT-M	FOCUS
	Concentration closest to the 80th					HAMB-	HAMB-		
122	percentile (ug/L)	NO3	648717.868	HAMBURG	Nitrate_VEG	CABBAGE	S_Soil	HAMB-M	No
	Concentration closest to the 80th					JOKI-	JOKI-		
123	percentile (ug/L)	NO3	886762.517	JOKIOINEN	Nitrate_VEG	CABBAGE	S_Soil	JOKI-M	No
	Concentration closest to the 80th			KREMSMUEN		KREM-	KREM-		
124	percentile (ug/L)	NO3	401065.527	STER	Nitrate_VEG	CABBAGE	S_Soil	KREM-M	No
	Concentration closest to the 80th					PORT-	PORT-		
125	percentile (ug/L)	NO3	262669.438	PORTO	Nitrate_VEG	CABBAGE	S_Soil	PORT-M	FOCUS
	Concentration closest to the 80th		******			SEVI-	SEVI-		
126	percentile (ug/L)	NO3	* * * *	SEVILLA	Nitrate_VEG	CABBAGE	S_Soil	SEVI-M	FOCUS
	Concentration closest to the 80th					THIV-	THIV-		
127	percentile (ug/L)	NO3	659263.41	THIVA	Nitrate_VEG	CABBAGE	S_Soil	THIV-M	FOCUS